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Parametrically driven surface waves on viscous ferrofluids

Hanns Walter Mu¨ller
Institut für Theoretische Physik, Universita¨t des Saarlandes, D-66041 Saarbru¨cken, Germany

~Received 24 April 1998!

Standing waves on the surface of a ferrofluid in a normal magnetic field can be excited by a vertical
vibration of the container. A stability theory for the onset of these parametrically driven waves is developed,
taking viscous dissipation and finite depth effects into account. It will be shown that a careful choice of the
filling level permits the normal and anomalous dispersion branches to be measured. Furthermore it will be
demonstrated that the parametric driving mechanism may lead to a delay of the Rosensweig instability. A
bicritical situation can be achieved when Rosensweig and Faraday waves interact.@S1063-651X~98!05311-2#

PACS number~s!: 47.20.Ma, 75.50.Mm
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I. INTRODUCTION

A wide application spectrum of ferrofluids is based on t
free surface behavior in the presence of a magnetic fi
@1–3#. Cowley and Rosensweig@4# found that the surface
undergoes a spontaneous instability in a static normal m
netic field. As the instability is also static, a theoretical d
scription of the onset can be based on the dispersion rela
v0(k) for inviscid surface waves. As soon as the appli
magnetic field exceeds a critical threshold,v0

2 becomes
negative and a stationary surface pattern~e.g., in the form of
hexagons! develops. For magnetic fields slightly below th
Rosensweig threshold the dispersionv0(k) is nonmonoto-
nous with an intermediate branch of negative slope~anoma-
lous dispersion!. Although there is experimental evidenc
@5,6# of this hysteretic behavior, the anomalous dispers
branch has not been directly detected yet. Recently, a t
modal nonlinear surface pattern, denoted as ‘‘twin peak
has been observed@6#, which might be the result of a bicriti
cal situation with two competing unstable wave numbers

The excitation of surface waves can be realized by diff
ent mechanisms. For instance, a horizontal vibration of
vessel@7# or a modulated air jet directed against the surfa
@5# provide a driving force which couples additively to th
equations of motion: No matter how small the excitati
amplitude, it always leads to a wave excitation. This is
contrast to the multiplicative~parametric! forcing, where
wave generation is successful only beyond a finite excita
amplitude. That way surface waves have been excited b
modulation of the applied magnetic field@8–10# or by a ver-
tical vibration of the vessel@6#.

In principle, different excitation mechanisms may res
in distinct wave dispersions. However, in case of weak d
sipation ~which frequently applies to surface wave expe
ments! the necessary driving forces remain small and, th
the dispersion approximately coincides with that offree in-
viscid surface waves. Nevertheless, viscous dissipation
be incorporated into the theory. Such computations h
been performed@11,12# for free surface waves. No investi
gation has yet been undertaken for surface waves in the p
ence of a parametric drive.

The present study will fill this gap. It will be shown tha
depending on the filling depthh, a more or less extende
region of available wave numbers can be gradually eli
PRE 581063-651X/98/58~5!/6199~7!/$15.00
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nated from the spectrum of unstable modes. By virtue of t
effect a specific experiment will be proposed by which
dispersion branches, including the anomalous one, can
measured. The theory outlined below will also demonstr
that the parametric drive can be used to delay or suppres
Rosensweig instability until it intersects with the Farad
instability. Nonlinear wave number resonance in the nei
borhood of this bicritical situation is expected to induce
teresting surface wave pattern formation.

II. THE SYSTEM

A horizontally unbounded ferrofluid layer of thicknessh
is exposed to a dc magnetic field perpendicular to its f
surface~see Fig. 1 for a sketch!. The ferrofluid is sandwiched
between a covering air layer~medium 1! and the magneti-
cally impermeable container material~medium 3!. Quantities
with superscripts in parenthesis refer to these media.
brevity, variables without superscript denote the ferroflu

FIG. 1. Sketch of the setup. A ferrofluid layer of infinite hor
zontal extension is exposed to a static normal magnetic field a
time dependent gravity modulationg(t) directed along the vertica
z axis. The container material below the fluid and the covering
are magnetically impermeable.
6199 © 1998 The American Physical Society
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In order to excite surface waves the whole apparatus is
posed to a vertical vibration@effective gravity modulation
g(t)#.

A. Hydrodynamic equations and boundary conditions

The fluid motion is governed by the hydrodynamic fie
equations. For a constant density fluid, with a velocity fie
v(r ,t)5(u,v,w) the balance equations for mass and line
momentum read as

“•v50, ~2.1!

r~] tv1v•“ !v5“•s2rg~ t !ez , ~2.2!

s i j 52pd i j 1h~“ iv j1“ jv i !2
m0~11x!

2
H2d i j 1HiBj .

~2.3!

The stress tensors consists of the pressurep(r ,t), a viscous
term proportional to the dynamic viscosityh, and two elec-
tromagnetic contributions. The latter ones result from
Maxwell stress tensor with the magnetic fieldH, the induc-
tion B5m0(H1M ), and the magnetizationM . Magneto-
striction has been neglected. Furthermorer is the density of
the fluid andg(t) is the time dependent acceleration cor
sponding to the vertical vibration of the system.

The equations of motion have to be supplemented by
propriate boundary conditions. At the bottom of the co
tainer atz52h the no-slip condition applies

vu2h50. ~2.4!

To describe waves at the surface of the layer we introd
the surface elevationz(x,y,t), which vanishes when the
fluid is in its unperturbed base state~undeformed plane sur
face!. The kinematic relation betweenz and the velocity field
reads as

] tz1uuz]xz1vuz]yz5wuz , ~2.5!

whereuz stands for the evaluation at the free surface. Fr
the force balance at the free surfacez5z(x,y,t) we get

~s~1!2s!uz•n5g~“•n!n, ~2.6!

wheren5(2]xz,2]yz,1)/A11(]xz)21(]yz)2 is the local
surface normal vector andg the surface tension. Due to th
small dynamic viscosity of air, viscous friction therein ca
be neglected and the stress tensor is well approximated

s i j
~1!52Fpatm2

m0

2
~H ~1!!2Gd i j

with the constant atmospheric pressurepatm .

B. The electromagnetic equations and boundary conditions

For hydrodynamic problems of nonconducting ferroflui
Maxwell’s equations can be taken in their magnetostatic
proximation@1#

“3H~ i !50, “•B~ i !50, i 51,2,3. ~2.7!
x-
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At the top and bottom interface of the ferrofluid the tange
tial component ofH and the normal component ofB have to
be continuous

n•~B~1!2B!uz50, ez•~B2B~3!!u2h50, ~2.8!

n3~H~1!2H!uz50, ez3~H2H~3!!u2h50. ~2.9!

C. The basic state and linearized equations of motion

When the container of the fluid is subject to a vertic
oscillatory displacement with frequency 2V, the earth grav-
ity g0 is modulated in the comoving frame according
g(t)5g01a cos(2Vt). As long as the modulation amplitud
a is small, the system is in its basic or ground state. In
container-fixed frame of reference the fluid rests (v50) and
the surface is perfectly flat (z50). The magnetic propertie
inside and outside the fluid are stationary and spatially
mogeneousH( i )5HG

( i )5HG
( i )ez , M5MG5MGez , where

the subscriptG refers to the ground state. Whenv50 the
time dependent drive in the Navier-Stokes equation is co
pensated by the pressure

pG~r ,t !5patm2
m0

2
MG

2 2rg~ t !z. ~2.10!

The second term in Eq.~2.10! is the magnetic pressure jum
at the free surface.

If the mechanical excitation is strong enough the grou
state becomes unstable and surface waves develop. L
denote deviations from the basic state profiles by

v, z, dp5p2pG , m5M2MG , h~ i !5H~ i !2HG
~ i ! .

~2.11!

After linearizing the magnetohydrodynamic equations a
boundary conditions one obtains for the ferrofluid bulk

“•v50, ~2.12!

r] tv52“dp1h¹2v1m0“~MG•h!. ~2.13!

On taking the curl curl of Eq.~2.13! the gradient terms are
eliminated and an equation for the vertical componentw of
the velocity field results

~] t2n¹2!¹2w50, ~2.14!

wheren5h/r is the kinematic viscosity. At the bottom o
the vessel the no-slip boundary conditions read as

wu2h5]zwu2h50, ~2.15!

while one gets at the free surface

] tz5wu0 , ~2.16!

~]z
22¹'

2 !wu050, ~2.17!

$2r] t]zw1h]z
3w13h]z¹'

2 w1rg~ t !¹'
2 z2g¹'

4 z

2m0MG¹'
2 @~h1m!•ez#%u050. ~2.18!
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Here u0 denotes evaluation at the resting free surface
“'5(]x ,]y,0) is the horizontal gradient. From the four
term in Eq.~2.18! it can be seen that the drive mechanism
parametric.

The magnetic fields obey

“3h~ i !50, “•h~ i !50, i 51,3 ~2.19!

“3h50, “•~h1m!50 ~2.20!

with the boundary conditions

ez•~h1m2h~1!!u050, ez•~h1m2h~3!!u2h50,
~2.21!

H ex

ey
J •$MG“'z2~h2h~1!!u0%50, H ex

ey
J •~h2h~3!!2h50.

~2.22!

III. SURFACE WAVES

In the absence of driving@g(t)5g05const# we denote
surface waves as ‘‘free.’’ In this case the stability problem
autonomous in time and a solution of the formz}ei (kx1vt)

applies. The vertical dependencies of the fields can be i
grated and the boundary conditions yield a solvability co
dition, which determines the dispersionv(k).

A. Inviscid free surface waves

For an ideal fluid (h50) the solvability condition yields
the dispersion of inviscid free surface waves

2v21v0
2~k!50, ~3.1!

v0
2~k!5tanh~kh!H g0k2

m0

r

11x

21x

3S 12
2x

~21x!2e2kh2x2D MG
2 k21

g

r
k3J .

~3.2!

This result has been derived earlier by several auth
@8,11,12#. Equation~3.2! holds for a constant susceptibilit
magnetic fluid with M5xH. If the magnetization ap-
proaches saturation this approximation ceases to apply. T
the magnetic contribution in~3.2! has to be replaced by

2
m0

r

11x̄

21x̄
S 12

2x̄

~21x̄ !2e2kh~11x̄ !/~11x!2x̄2D MG
2 k2,

~3.3!

where x5]M /]HuHG
is the differential susceptibility,x̃

5MG /HG the chord susceptibility and 11x̄

5A(11x)(11x̃). For the results presented in Sec. VI t
approximation~3.2! is sufficient.

As the magnetic term in Eq.~3.2! opposes to gravity and
surface tension, the dispersion may become nonmonoto
as a function of the wave numberk. If the magnetizationMG

is sufficiently strong,v0
2 changes sign and the normal field
d

s

e-
-

rs

en

us

Rosensweig instability occurs. Note: as this instability
static the expressions for the critical magnetization and
critical wave numbers

MR
25

2

m0

21x̄

11x̄
Arg0g, kR5S rg0

g D 1/2

~3.4!

apply for inviscid as well as viscous fluids. Equation~3.4!
holds in the deep water limitkh@1. The h dependence of
MR andkR has been investigated by Weilepp and Brand@11#
and Abouet al. @12#. Figure 2 depicts the inviscid dispersio
~3.2! for three different filling levels at a magnetizationMG
50.993MR , i.e., 1% below the Rosensweig threshold fo
deep fluid layer.

B. Viscous free surface waves

It is important to note that the hydrodynamic bulk equ
tions and boundary conditions@Eqs. ~2.12!, ~2.14!–~2.17!#
for w can be solved in terms ofz without reference to the
magnetic properties of the fluid. Likewise, the solution of t
magnetic-field equations and boundary conditions@Eqs.
~2.19!–~2.22!# can be expressed byz without knowledge of
the velocity field w. Velocity and magnetic fields are
coupled by the normal force balance~2.18!. Consequently
the viscous contributions therein can be overtaken fromnon-
magnetic fluids. Invoking the expression of Kumar an
Tuckerman@13# the viscous dispersion reads as

2v21v2X~k,v!1v0
2~k!50, ~3.5!

where

FIG. 2. The inviscid dispersion relation@Eq. ~3.2!# for free sur-
face waves at different filling levelsh. The applied magnetic field is
only 1% below the Rosensweig thresholdMR giving a strong hys-
teresis. The two normal branches are labeled by~i! and ~iii !, the
anomalous branch with negative slope by~ii !. Fluid parameters are
for EMG 909 ~Ferrofluidics corporation!: n56 mm2/s, r
51.02 g/cm3, g50.0265 N/m, andx50.8.
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2v21v2X~k,v!5
n2

q coth~qh!2k coth~kh!

3H q@4k41~k21q2!2#coth~qh!2k@4k2q21~k21q2!2#tanh~kh!2
4k2q~k21q2!

cosh~kh!sinh~qh!J ~3.6!
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andq5Ak21 iv/n. This expression has recently been rep
duced by Abouet al. @12#. Note their complicated represen
tation ofv0

2(k) coincides with Eq.~3.2!. Usually for surface
wave experiments the limit of weak dissipation applie
where the dimensionless parameternk2/v is small. On ex-
panding Eq.~3.6! up to first order one gets

X~k,v!5~211 i !
A2

sinh~2kh!S nk2

v D 1/2

1 i @31coth2~kh!#S nk2

v D1OS nk2

v D 3/2

. ~3.7!

The first term results from the viscous boundary layer alo
the bottom of the container@14# and contributes appreciabl
only if kh&1. It dies out rapidly when the wavelength fal
short of the depthh. In that case the second term in Eq.~3.7!
dominates. It is proportional tonk2 and reflects viscous dis
sipation in the bulk of the fluid. By varying the filling levelh
the relation between bulk and bottom damping is under
ternal control.

C. Parametrically driven surface waves

For time dependent gravityg(t) the boundary condition
~2.18! is no longer autonomous in time. The parametric dr
couples neighboring temporal Fourier modes. At the onse
the instability the monochromatic time dependenceeikx1vt

must be replaced by the Floquet ansatz

z}eibVt (
n52`

`

zne2inVt. ~3.8!

Substitution of this ansatz leads to the infinite dimensio
tridiagonal system

$2v21v2X~k,v!1v0
2%zn1

ak tanh~kh!

2
~zn111zn21!50,

~3.9!

wherev5(2n1b)V. The caseb51 (b50) corresponds
to the subharmonic~harmonic! surface response. The Eq
~3.9! can be numerically approximated by an appropriate c
off ~see Ref.@13# for details!. The solvability condition
yields the neutral stability curvesa(S)(k) anda(H)(k) for the
subharmonic~S! and the harmonic~H! surface resonance
respectively. A subsequent minimization with respect to
wave number determines the critical onset amplitudesac

(S)

andac
(H) and the critical wave numberskS ,kH . These quan-

tities can be investigated as a function of the driving f
quencyV and the dc component of the magnetic fieldHG .
-
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IV. RESULTS

A. Dispersion for parametrically excited surface waves

In this section we discuss the onsetac
(S)(V) and the dis-

persionkS(V) for surface waves driven by a vertical vibra
tion of the vessel. Our computations are performed for
ferrofluid EMG 909~Ferrofluidics Corporation!, which has
been used in recent experiments@5,6,9#. The fluid parameters
are n56 mm2/s, r51.02 g/cm3, g50.0265 N/m, andx
50.8. To achieve a dispersion with a considerable hyster
a static magnetizationMG50.993MR is imposed. Figure 3
depicts some representative neutral stability curves for
subharmonic Faraday resonance at different values of
drive frequency and the filling levelh. The harmonic insta-
bility tongue is suppressed as it always leads to a hig
threshold within the considered parameter range. Depen
on the excitation frequency the neutral curves in Fig. 3
hibit up to three local minima, which reflect the thre
branches of the hysteretic dispersion shown in Fig. 2. T
first row in Fig. 3 with h510 cm represents the infinit
depth limit. In this case dissipation is solely dominated
viscous friction in the bulk flow, which is proportional t
nk2. At small drive frequencies@Figs. 3~a! and 3~b!# the
critical wave numberkS is determined by the left local mini
mum, which corresponds to the dispersion branch~i! in Fig.
2. At the filling levelh55 mm @Figs. 3~d!–3~f!# dissipation
in the bottom boundary layer becomes important belowk

FIG. 3. Neutral stability curvea(S)(k) for the subharmonic Far-
aday instability at different drive frequenciesV and filling levelsh.
The applied magnetizationMG is 1% below the Rosensweig
thresholdMR for a deep fluid layer. Below~above! the resonance
tongues the plane surface is stable~unstable!. The absolute mini-
mum of the neutral curve determines the critical wave numberkS

and the onset amplitudeac
(S) . Parameters as in Fig. 2.
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;1/h5200 m21. Wave numbers in that region are strong
damped and their onset is delayed. The absolute minimum
the marginal curve in Figs. 3~d!–3~e! is thus selected from
the anomalous dispersion branch~ii !. On reducingh even
further, an increasing wave number range is eliminated fr
the spectrum of available modes. Ath52 mm @Figs. 3~g!–
3~i!# wave numbers belowk;1/h5500 m21 are strongly
inhibited and thuskS is always located on the normal dispe
sion branch~iii !.

Figure 4 shows the critical wave numberkS(V) as ob-
tained by minimizing the neutral curves with respect tok. As
damping is weak the computed dispersion for parametric
driven waves~indicated by squares! compares well with the
inviscid relationv0(k) ~lines!. Depending on the filling leve
h, the normal as well as the anomalous branches can
probed. Wave number jumps occur when two neighbor
minima in the neutral chart appear at the same drive am
tude a. Such a coexistence of two unstable wave numb
occurs in Figs. 4~a! and 4~b! at a drive frequency ofV/p
.10 Hz. Recently, supercritical ‘‘twin peak’’ patterns hav
been observed@6# at an excitation frequency of 9.6 Hz
They are likely the result of this bicriticality. The observe
wave number ratio of approximately 4 must be compa
with the value;3, which can be read off from Fig. 4~b!.
Note however, that the experiment is performed in a narr
channel, while the present analysis is made for a later
infinite layer. By carefully tuning both the drive frequenc
and the filling level, it is possible to achieve a tricritic
situation, where all three minima of the neutral curve~Fig. 3!
occur at the same acceleration amplitude.

We mention that the linear dispersionkS(V) calculated
here need not coincide with the wave number of relax
nonlinear wave patterns@6#. Nevertheless, our predictio
should at least be measurable during the transient growt

FIG. 4. The dispersion ofparametrically drivensurface waves
at different filling levelsh as obtained from the eigenvalue proble
Eq. ~3.9! ~squares!. For the sake of comparison, the dispersion
free inviscidsurface waves@according to Eq.~3.2! and shown in
Fig. 2# is presented as a line. Parameters as in Fig. 2.
of
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be
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a perturbation out of the unstable plane surface.
Even though viscous dissipation does not appreciably

ter the dispersionkS(V), it is crucial for the threshold am
plitude ac

(S)(V). Figure 5 depicts the corresponding theor
ical prediction. The steep steps in the curves forh510 cm
andh55 mm are related to the wave number jumps in Fi
4~a! and 4~b!. No bicriticality occurs at the levelh
52 mm.

Within the low viscosity limitnk2/V!1 an approxima-
tive expression for the onset amplitude can be computed
perturbative expansion analogous to Ref.@14# leads to

ac
~S!.

2V2

kS
Im@X~kS ,V!#coth~ksh!, ~4.1!

where Im denotes the imaginary part. On ignoring visco
corrections to the dispersion,kS can be evaluated by solvin
the transcendent equationV5v0(ks). Among the possible
roots, take that one which yields the smallest value ofac

(S) .

B. Bicriticality of Faraday and Rosensweig instability

The theory of the Mathieu oscillator reveals that the sta
equilibrium position of a pendulum can be destabilized b
gravity modulation. This is the basic mechanism of the F
aday instability. However, it is also known that the unsta
equilibrium of the pendulum~upright position! can be stabi-
lized by the same parametric drive. It is therefore tempting
transfer this idea to hydrodynamic systems. This has b
successfully demonstrated for Rayleigh Be´nard convection
@16,17#, where the supercritical conductive state could
stabilized by a modulation of the applied temperature gra
ent. Likewise one expects that the Rosensweig instability
ferrofluids can also be delayed or suppressed by the gra
modulation. Figure 6 shows the neutral stability diagram
three different drive frequencies at a magnetic field am
tude which exceeds the Rosensweig threshold by 0.5%.
upper instability tongue is related to the subharmonic Fa

r

FIG. 5. The critical acceleration amplitudeac
(S) for the onset of

subharmonic Faraday waves. Parameters as in Fig. 2.
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day resonance already presented in Fig. 3. The new ton
entering the stability diagram form below corresponds to
Rosensweig instability. IfV is high enough@Fig. 6~c!# Far-
aday and Rosensweig tongues do not overlap on thea axis.
Drive amplitudes within the gapDa stabilize the basic plane
surface state. On leaving the gap towards largera, Faraday
waves will be excited, while a reduction ofa below the gap
leads to the onset of the Rosensweig instability. Figur
shows the threshold of both instabilities as a function of

FIG. 6. The neutral stability curves for the subharmonic Fara
instability ~solid line! and the Rosensweig instability~dashed line!
at different drive frequencies. The magnetizationMG is 0.5%
higher than the Rosensweig thresholdMR . At V/p550 Hz the
rest state~plane surface! is linearly stable for drive amplitude
within the gapDa. Fluid parameters for EMG 909,h55 mm.

FIG. 7. The stability thresholds for subharmonic Faraday wa
~solid line! and the Rosensweig instability~dashed line! as a func-
tion of ~a! the applied magnetic fieldHG or ~b! the excitation fre-
quencyV/p. The magnetic field is measured in units ofHR . Pa-
rameters as in Fig. 2,h55 mm.
ue
e

7
e

static field strengthHG and the excitation frequencyV/p.
The stable gap can be increased by either decreasing
magnetic field strength~the Rosensweig tongue withdraw!
or by increasing the vibration frequency~the Faraday thresh
old rises!. The critical wave numberkR;614 m21, which
belongs to the maximum of the Rosensweig tongue, is
most independent ofHG and V. This is in contrast to the
critical Faraday wave numberkS , which depends strongly on
V via the dispersion@cf. inset in Fig. 7~b!#. The two insta-
bilities also distinguish by the time dependence of the
cited waves: Faraday waves oscillate subharmonic
around a zero mean value@b51 in Eq. ~3.8!#. On the other
hand, waves beyond the Rosensweig onset oscillate arou
finite mean value synchronously to the external drive.
light of Eq. ~3.8! they belong to the subclass of waves wi
b50.

Mediated by quadratic nonlinearities in the hydrodynam
equations a coupling among three Rosensweig modes oc
if their lateral wave vectors fulfill the geometric resonan
condition kR11kR25kR3 , whereukRiu5kR . This is the ge-
neric triad wave vector interaction which enforces hexago
surface patterns@1#. An analogous resonance among thr
Faraday modes is inhibited by the subharmonic symmetr
their time dependence. Those Faraday patterns usually
hibit a square symmetry, which results from a four-wa
vector interaction@19#.

The existence of a Faraday-Rosensweig bicriticality op
the possibility for a nonlinear cross coupling between t
Faraday modes,kS1 andkS2 , and one Rosensweig modekR .
Temporal as well as spatial resonance is ensured ifkS1
1kS25kR holds. The anglef betweenkS1 andkS2 depends
on ukSu and can be controlled by the excitation frequencyV
@see inset of Fig. 7~b!#. Thus pattern formation can be influ
enced by varying this external control parameter. By insp
tion it can be seen that the combined action of self- a
cross-coupling between the different modes takes maxim
advantage if the anglef is tuned to be 150 °. This corre
sponds to

kS5kR /A2~11cosf!.614 m21/A2@11cos~150°!#

.1190 m21. ~4.2!

In this case, quasiperiodic surface patterns with a twelve-f
orientational symmetry are likely to occur. Recently, th
resonant coupling was shown@15# to enforce quasiperiodic
structures in Rayleigh-Be´nard convection under gravity
modulation. Clearly, the above simple resonance argum
does not replace a full nonlinear calculation; nevertheles
is a strong indicator and at least a hint at an interesting
rameter regime. For the fluid EMG 909~depthh55 mm)
we find that the appropriate bicriticality appears atMG
.1.0043MR andV/p.32 Hz.

V. DISCUSSION

The experiments presented in Refs.@5,6# have been per-
formed in a narrow ring channel of 5 mm width. This co
fined geometry is presumably inappropriate for a quantita
comparison with the above results. For instance, the str
deviations between the empiric Rosensweig wave num
and the theoretical valuekR5Arg0 /g are suspected to aris
from the container side walls and inhomogeneities of

y

s
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magnetic field. Measurements in a container with a lar
horizontal extension are thus desirable. Other problems
ally encountered with water- or kerosin-based ferroflu
~EMG909 belongs to this class! are the evaporation of th
solvent and a drift of the surface tension due to contam
tion. Here, oil based ferrofluids are more appropriate. Th
fluids are less sensitive against surface impurities. Moreo
since they are also more viscous, parasitic damping eff
due to the container side walls and the meniscus contact
@18,19# would become less disturbing. Recent Faraday
periments@20,21# with ~nonmagnetic! silicone-oils as work-
ing fluids demonstrate that empiric onset data and theore
predictions coincide within a few percent.

In this paper surface waves are investigated, which
driven by a periodic modulation of gravity. Alternatively,
modulation of the applied magnetic field could be used
cording toHG5HG01a cos(2Vt). In this case the basic stat
magnetizationMG(t)5xHG(t) becomes time dependent. A
it entersquadratically into Eq. ~3.2!, the effective excitation
signal is composed of two frequencies, except in the li
a!HG0 . It should also be noticed that the effective ma
netic drive is proportional tok2 while it is linear ink for the
gravity modulation. Shorter wavelengths are thus favored
,
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the magnetic drive. This effect might be important in a rec
magnetic Faraday experiment@9#, where the first members o
the alternating subharmonic-harmonic resonant cascade
been observed. This succession has been predicted@22# ~for
nonmagnetic liquids!, when the experiment is operated in th
so-called lubrication limit, whereh compares to the viscou
skin depthAn/V. In this situation, however, the phenom
enon of rotational viscosity in ferrofluids can no longer
ignored. While the flow field in thick layers can be consi
ered irrotational, this approximation fails in the lubricatio
limit. The flow in thin layers is predominately vortical an
the finite magnetic relaxation time leads to an increased
fective viscosity@23#. The additional contribution might be
detectable in a careful measurement of the onset thresh
which in turn depends sensitively on the viscous dissipati
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