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Parametrically driven surface waves on viscous ferrofluids
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Standing waves on the surface of a ferrofluid in a normal magnetic field can be excited by a vertical
vibration of the container. A stability theory for the onset of these parametrically driven waves is developed,
taking viscous dissipation and finite depth effects into account. It will be shown that a careful choice of the
filling level permits the normal and anomalous dispersion branches to be measured. Furthermore it will be
demonstrated that the parametric driving mechanism may lead to a delay of the Rosensweig instability. A
bicritical situation can be achieved when Rosensweig and Faraday waves irffi®id&3-651X98)05311-2

PACS numbds): 47.20.Ma, 75.50.Mm

I. INTRODUCTION nated from the spectrum of unstable modes. By virtue of this
effect a specific experiment will be proposed by which all
A wide application spectrum of ferrofluids is based on thedispersion branches, including the anomalous one, can be
free surface behavior in the presence of a magnetic fieltheasured. The theory outlined below will also demonstrate
[1-3]. Cowley and Rosenswei#] found that the surface that the parametric drive can be used to delay or suppress the
undergoes a spontaneous instability in a static normal madRosensweig instability until it intersects with the Faraday
netic field. As the instability is also static, a theoretical de-instability. Nonlinear wave number resonance in the neigh-
scription of the onset can be based on the dispersion relatidporhood of this bicritical situation is expected to induce in-
wo(K) for inviscid surface waves. As soon as the appliedteresting surface wave pattern formation.
magnetic field exceeds a critical threshold3 becomes

negative and a stationary surface patt@m., in the form of Il. THE SYSTEM
hexagons develops. For magnetic fields slightly below the ' _ _
Rosensweig threshold the dispersiog(k) is nonmonoto- A horizontally unbounded ferrofluid layer of thicknelss

nous with an intermediate branch of negative slmeoma- iS exposed to a dc magnetic field perpendicular to its free
lous dispersion Although there is experimental evidence surface(see Fig. 1 for a sketghThe ferrofluid is sandwiched
[5,6] of this hysteretic behavior, the anomalous dispersiorbetween a covering air layémedium 3 and the magneti-
branch has not been directly detected yet. Recently, a twosally impermeable container materiaedium 3. Quantities
modal nonlinear surface pattern, denoted as “twin peaks'with superscripts in parenthesis refer to these media. For
has been observg@], which might be the result of a bicriti- brevity, variables without superscript denote the ferrofluid.
cal situation with two competing unstable wave numbers.

The excitation of surface waves can be realized by differ- [ 1] ] |
ent mechanisms. For instance, a horizontal vibration of the magnetic field H
vessel 7] or a modulated air jet directed against the surface \l, \y \ll \l/ \l,

[5] provide a driving force which couples additively to the
equations of motion: No matter how small the excitation
amplitude, it always leads to a wave excitation. This is in , n
contrast to the multiplicativgparametri¢ forcing, where I air \

wave generation is successful only beyond a finite excitation || e, _dememe.
amplitude. That way surface waves have been excited by a ?
modul_atior_l of the applied magnetic fidl8—10Q or by a ver- 2 ferrofluid
tical vibration of the vessdb].

In principle, different excitation mechanisms may result l
in distinct wave dispersions. However, in case of weak dis-
sipation (which frequently applies to surface wave experi-
mentg the necessary driving forces remain small and, thus,
the dispersion approximately coincides with thatfrefe in-
viscid surface waves. Nevertheless, viscous dissipation can
be incorporated into the theory. Such computations have
been performed11,17 for free surface waves. No investi-
gation has yet been undertaken for surface waves in the pres- |G 1. Sketch of the setup. A ferrofluid layer of infinite hori-
ence of a parametric drive. zontal extension is exposed to a static normal magnetic field and a

The present study will fill this gap. It will be shown that, time dependent gravity modulatiay(t) directed along the vertical
depending on the filling depth, a more or less extended z axis. The container material below the fluid and the covering air
region of available wave numbers can be gradually elimi-are magnetically impermeable.
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In order to excite surface waves the whole apparatus is exAt the top and bottom interface of the ferrofluid the tangen-
posed to a vertical vibratiofeffective gravity modulation tial component oH and the normal component Bfhave to

g(t)]. be continuous
A. Hydrodynamic equations and boundary conditions n (B<l)_ B)|§:O’ e (B— B<3))| -n=0, (2.9
The fluid motion is governed by the hydrodynamic field n><(H(1>—H)|g:O, eX(H—H®)|_,=0. (2.9

equations. For a constant density fluid, with a velocity field
v(r,t)=(u,v,w) the balance equations for mass and linear _ _ _ _ _
momentum read as C. The basic state and linearized equations of motion
When the container of the fluid is subject to a vertical
oscillatory displacement with frequency)? the earth grav-
ity go is modulated in the comoving frame according to
g(t)=go+acos(A). As long as the modulation amplitude
(1+y) a is small, the system is in its basic or ground state. In a
oij=—pd;+ n(Vivj+ V) — quéij +H;B;. container-fixed frame of reference the fluid rests-Q) and
2 the surface is perfectly flaZ & 0). The magnetic properties
(2.3} inside and outside (t_r)1e f|l(J_i)d are stationary and spatially ho-
. . mogeneousHV=HY=H%e,, M=Mg=Mge,, where
The stress tensar consists of the pressupr,t), a viscous the subscripiG refers to the ground state. Whem=0 the

term proportional to the dynamic viscosiy, and two elec- . S X L
tromagnetic contributions. The latter ones result from thetIme dependent drive in the Navier-Stokes equation is com-

Maxwell stress tensor with the magnetic fiéld the induc- pensated by the pressure

tion B=pug(H+M), and the magnetizatioM. Magneto- o

striction has been neglected. Furthermpris the density of Pe(r,t) =Patm— 7M(23—pg(t)z. (2.10

the fluid andg(t) is the time dependent acceleration corre-

sponding to the vertical vibration of the system. The second term in Ed2.10 is the maanetic pressure ium
The equations of motion have to be supplemented by ap nEd2.101 gheticp ure Jump

e bound giti At the bott f th at the free surface.
propriate boundary conditions. 7 € bottom ot the €on- it the mechanical excitation is strong enough the ground
tainer atz= —h the no-slip condition applies

state becomes unstable and surface waves develop. Let us
(2.4) denote deviations from the basic state profiles by

V.-v=0, (2.1

p(V+V-VIV=V-o—pg(t)e,, (2.2)

V|,h:O.

To describe waves at the surface of the layer we introduce”> ¢ 9P=P~Ps, mM=M-Mg, h=HO—Hg).
the surface elevatiori(x,y,t), which vanishes when the (2.1
fluid is in its unperturbed base statendeformed plane sur-
face. The kinematic relation betweehnand the velocity field
reads as

After linearizing the magnetohydrodynamic equations and
boundary conditions one obtains for the ferrofluid bulk

Hl+ul L+l 0 0=w]|,, (2.5) V-v=0, (212
- 2
where|, stands for the evaluation at the free surface. From pov=—=Vp+nVv+ueV(Mg:-h). (213

the force balance at the free surface{(x,y,t) we get On taking the curl curl of Eq(2.13 the gradient terms are

(2.6) eliminated and an equation for the vertical componeruf

(1) _ .Nn= .
(0 =)l n=y(V-mn, the velocity field results

wheren= (—dy, — dyl, 1)1+ (3,0)*+ (dy)* is the local

surface normal vector angl the surface tension. Due to the
small dynamic viscosity of air, viscous friction therein can
be neglected and the stress tensor is well approximated b

(8,— vV?)V?w=0, (2.14

where v= n/p is the kinematic viscosity. At the bottom of
Ythe vessel the no-slip boundary conditions read as

H— _

O—ij

patm—%(H(l))z}ﬁij W[ _p=d,W|_,=0, (2.19

. _ while one gets at the free surface
with the constant atmospheric pressprg,,.

a&=wlo, (2.16
B. The electromagnetic equations and boundary conditions
2_ o2 _
For hydrodynamic problems of nonconducting ferrofluids (97— VI)W|o=0, (217
Maxwell's equations can be taken in their magnetostatic ap- 3 ) ) 4
proximation[1] {=pdd W+ nizw+ 373, Viw+pg(t) Vi{—yVi{

vxHV=0, v.B"V=0, i=1,2,3. 2.7 —,quGVf[(thm)-eZ]HO:O. (2.18
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Here |, denotes evaluation at the resting free surface anc 15 . .

V, =(dx,dy,0) is the horizontal gradient. From the fourth

term in Eq.(2.18 it can be seen that the drive mechanism is

parametric.
The magnetic fields obey
vxh=0, v.-hV=0, i=1,3 (2.19
VXxXh=0, V-(h+m)=0 (2.20
with the boundary conditions
e, (h+m—hM)[,=0, e, (h+m-h®)|_, =0,
(2.21

e €
AMGV, Z— (h—hM)|r=0, [ ] h—h®)_,=0.
(2.22

Ill. SURFACE WAVES

In the absence of drivingg(t)=gy=consi we denote

surface waves as “free.” In this case the stability problem is

autonomous in time and a solution of the fogme' (K
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FIG. 2. The inviscid dispersion relatiqieq. (3.2)] for free sur-
face waves at different filling levels. The applied magnetic field is
only 1% below the Rosensweig threshadltk giving a strong hys-
teresis. The two normal branches are labeled(ipyand (iii ), the
anomalous branch with negative slope (BYy. Fluid parameters are
for EMG 909 (Ferrofluidics corporation v=6 mnt/s, p

applies. The vertical dependencies of the fields can be inte- ; o, glcm, y=0.0265 N/m, andy=0.8.
grated and the boundary conditions yield a solvability con-

dition, which determines the dispersiar(k).

A. Inviscid free surface waves

For an ideal fluid ¢=0) the solvability condition yields
the dispersion of inviscid free surface waves

— w?+ wi(k)=0, (3.1
1+
2000 _ Mo 2TX
wo(k)—tanr(kh)[gok 3Ty
2x 0
x| 1- ——2 | M2K2+K3}.
( (2+x)%2N— 2] "% p ]
(3.2

Rosensweig instability occurs. Note: as this instability is
static the expressions for the critical magnetization and the
critical wave numbers

2+x
/-LO 1+; Pgo%

2

P90

k:
R(V

1/2
M3 —) (3.4

apply for inviscid as well as viscous fluids. Equatit®14)
holds in the deep water limikh>1. The h dependence of
Mg andkg has been investigated by Weilepp and Braht]
and Abouet al.[12]. Figure 2 depicts the inviscid dispersion
(3.2 for three different filling levels at a magnetizatidg
=0.99X Mg, i.e., 1% below the Rosensweig threshold for a
deep fluid layer.

This result has been derived earlier by several authors

[8,11,13. Equation(3.2) holds for a constant susceptibility
magnetic fluid with M=yH. If the magnetization ap-

B. Viscous free surface waves

proaches saturation this approximation ceases to apply. Then It is important to note that the hydrodynamic bulk equa-

the magnetic contribution i(3.2) has to be replaced by

2x
2+;)2e2kh(l+/\/)/(l+x)_;2

_ Mo 1+;/

P 2+x\

1—( MZK?,

(3.3

where )(=(9M/¢9H|HG is the differential susceptibilityy

=Mg/Hg the chord susceptibilty and Hy

=v(1+ x)(1+Y). For the results presented in Sec. VI the
approximation(3.2) is sufficient.
As the magnetic term in Eq3.2) opposes to gravity and

tions and boundary conditior[€qgs. (2.12, (2.14—(2.17)]

for w can be solved in terms af without reference to the
magnetic properties of the fluid. Likewise, the solution of the
magnetic-field equations and boundary conditidi&gs.
(2.19—-(2.22] can be expressed hywithout knowledge of
the velocity field w. Velocity and magnetic fields are
coupled by the normal force balan¢2.18. Consequently
the viscous contributions therein can be overtaken fnaom-
magnetic fluids. Invoking the expression of Kumar and
Tuckerman[13] the viscous dispersion reads as

— 0+ 0?X(k,0) + w3(k)=0, (3.5

surface tension, the dispersion may become nonmonotonous

as a function of the wave numbler If the magnetizatioM ¢
is sufficiently strongwg changes sign and the normal field or

where
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V2

g coth(gh) — k coth(kh)

— w?+ w?X(k,w)=

X1 a[4k*+ (k*+ g?)]coth(gh) — K[ 4k?g?+ (k?+ ¢?)?]tanh(kh) — A o) (3.6
q q q q q costikh)sinh(gh) ‘
|
andg= Jk?+iw/v. This expression has recently been repro- IV. RESULTS

duced by Abouet al.[12]. Note their complicated represen-
tation ofcug(k) coincides with Eq(3.2). Usually for surface
wave experiments the limit of weak dissipation applies, In this section we discuss the ons&P(Q2) and the dis-
where the dimensionless parameté®/» is small. On ex- persionkg({2) for surface waves driven by a vertical vibra-

A. Dispersion for parametrically excited surface waves

panding Eq.(3.6) up to first order one gets tion of the vessel. Our computations are performed for the
ferrofluid EMG 909 (Ferrofluidics Corporation which has
J2 Vk2\ 12 been used in recent experimefs6,9. The fluid parameters
X(k,w)z(—1+i).—(—) arev=6 mnt/s, p=1.02 g/cni, y=0.0265 N/m, andy
sinh(2kh)\ o =0.8. To achieve a dispersion with a considerable hysteresis
k2 k2 372 a static magnetizatioM ;=0.99X My is imposed. Figure 3
+i[3+ cotk?(kh)](: +O(T) . 3.7 depicts some representative neutral stability curves for the

subharmonic Faraday resonance at different values of the
drive frequency and the filling levéd. The harmonic insta-
%ility tongue is suppressed as it always leads to a higher

the b_ottom of the_containc{az}] and contributes appreciably -y reshold within the considered parameter range. Depending
only if kh=1. It dies out rapidly when the wavelength falls o, e excitation frequency the neutral curves in Fig. 3 ex-

short of the deptih. In that case tzhe second term in Eaj)_ hibit up to three local minima, which reflect the three
dominates. It is proportional tok” and reflects viscous dis- hranches of the hysteretic dispersion shown in Fig. 2. The
sipation in the bulk of the fluid. By varying thg f|II|'ng level  first row in Fig. 3 withh=10 cm represents the infinite
the relation between bulk and bottom damping is under exgepih fimit. In this case dissipation is solely dominated by

The first term results from the viscous boundary layer alon

ternal control. viscous friction in the bulk flow, which is proportional to
vk?. At small drive frequencie$Figs. 3a) and 3b)] the
C. Parametrically driven surface waves critical wave numbekg is determined by the left local mini-

- . " mum, which corresponds to the dispersion bragin Fig.
For time dependent gravitg(t) the boundary condition 2. At the filling levelh=5 mm [Figs. 3d)-3(f)] dissipation

(2.18 is no longer autonomous in time. The parametric drive: he b bound | b X belo
couples neighboring temporal Fourier modes. At the onset df! the Pottom boundary layer becomes important below
the instability the monochromatic time dependeretg™ !

must be replaced by the Floquet ansatz 04 ' @7 ]
y Q/m=7Hz
o0 h=10cm
ipOt 2inQt 02 | 4 i
e n;x (e . (3.9 g
@f 0.0 :
Substitution of this ansatz leads to the infinite dimensional g 04 [ o . “1 ]
tridiagonal system % h=5mm
g 02 T T n=11Hz 1
, 5 aktanh(kh) 5 hesmim
{— 0"+ 0 X(K,0)+ wg}{n+ T(gn+l+gn—l):or 500 : : " ; p
D 04 1 I "1
(3.9 8
- 4 1 Qm=11Hz i
where w=(2n+B)Q. The case3=1 (8=0) corresponds 02 e h=2mm
to the subharmoni¢harmonig surface response. The Egs. . . ‘
(3.9) can be numerically approximated by an appropriate cut- o 500 o 500 0 500 1000
off (see Ref.[13] for detaily. The solvability condition wave number k [1/m]

yields the ngutral stability curve&@(k) anda(H)(k) for the FIG. 3. Neutral stability curva® (k) for the subharmonic Far-
SUbharmomC(S) and the harmo.mc.(H).surfa.ce resonance, aday instability at different drive frequenci@sand filling levelsh.
respectively. A subsequent minimization with respect to therhe applied magnetizatioM g is 1% below the Rosensweig
wave number determines the critical onset amplitual€s thresholdM g for a deep fluid layer. Belowabove the resonance
anda{" and the critical wave numbeks; .k, . These quan-  tongues the plane surface is stabimstable. The absolute mini-
tities can be investigated as a function of the driving fre-mum of the neutral curve determines the critical wave nuniaer
guency() and the dc component of the magnetic field . and the onset amplitud&> . Parameters as in Fig. 2.
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FIG. 5. The critical acceleration amplitu@é® for the onset of

FIG. 4. The dispersion gbarametrically drivensurface waves X o
subharmonic Faraday waves. Parameters as in Fig. 2.

at different filling levelsh as obtained from the eigenvalue problem
Eq. (3.9 (squares For the sake of comparison, the dispersion for

free inviscidsurface wavegaccording to Eq(3.2 and shown in & Perturbation out of the unstable plane surface.
Fig. 2] is presented as a line. Parameters as in Fig. 2. Even though viscous dissipation does not appreciably en-

ter the dispersiorkg(€2), it is crucial for the threshold am-
plitude al®(Q). Figure 5 depicts the corresponding theoret-
ical prediction. The steep steps in the curvesHerl0 cm
ndh=5 mm are related to the wave number jumps in Figs.

~1/h=200 m 1. Wave numbers in that region are strongly
damped and their onset is delayed. The absolute minimum
the marginal curve in Figs.(8)—3(e) is thus selected from 4@ and 4b). No bicriticality occurs at the levelh
the anomalous dispersion bran@h). On reducingh even =2 mm

further, an increasing wave number range is eliminated from Within. the low viscosity limitvk?/ Q<1 an approxima-

the spectrum of available modes. -2 mm(Figs. 3g)- tive expression for the onset amplitude can be computed. A

3(i)] wave numbers belok~1h=500 m* are strongly  poyirhative expansion analogous to Ha#] leads to
inhibited and thuks is always located on the normal disper- P P g Rel

sion branchiii ). © 202
Figure 4 shows the critical wave numbleg(Q)) as ob- ac” = _Im[X(ks,Q)]coth(ksh), (4.7
tained by minimizing the neutral curves with respecktd\s S

damping is weak the computed dispersion for parametricallyyhere |m denotes the imaginary part. On ignoring viscous
driven waves(indicated by squargsompares well with the ;o rrections to the dispersioks can be evaluated by solving
inviscid relationwg(K) (lines). Depending on the filling level  ha transcendent equatidd= wy(k,). Among the possible

h, the normal as well as the anomalous branches can ots, take that one which yields the smallest valuaGt.
probed. Wave number jumps occur when two neighboring

minima in the neutral chart appear at the same drive ampli-
tudea. Such a coexistence of two unstable wave numbers
occurs in Figs. @) and 4b) at a drive frequency of)/ = The theory of the Mathieu oscillator reveals that the stable
=10 Hz. Recently, supercritical “twin peak” patterns have equilibrium position of a pendulum can be destabilized by a
been observed6] at an excitation frequency of 9.6 Hz. gravity modulation. This is the basic mechanism of the Far-
They are likely the result of this bicriticality. The observed aday instability. However, it is also known that the unstable
wave number ratio of approximately 4 must be comparedquilibrium of the pendulunfupright position can be stabi-
with the value~ 3, which can be read off from Fig.(H). lized by the same parametric drive. It is therefore tempting to
Note however, that the experiment is performed in a narrowrransfer this idea to hydrodynamic systems. This has been
channel, while the present analysis is made for a laterallguccessfully demonstrated for Rayleighned convection
infinite layer. By carefully tuning both the drive frequency [16,17], where the supercritical conductive state could be
and the filling level, it is possible to achieve a tricritical stabilized by a modulation of the applied temperature gradi-
situation, where all three minima of the neutral cu(#@. 3)  ent. Likewise one expects that the Rosensweig instability in
occur at the same acceleration amplitude. ferrofluids can also be delayed or suppressed by the gravity
We mention that the linear dispersidi({)) calculated modulation. Figure 6 shows the neutral stability diagram for
here need not coincide with the wave number of relaxedhree different drive frequencies at a magnetic field ampli-
nonlinear wave patterng6]. Nevertheless, our prediction tude which exceeds the Rosensweig threshold by 0.5%. The
should at least be measurable during the transient growth afpper instability tongue is related to the subharmonic Fara-

B. Bicriticality of Faraday and Rosensweig instability
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static field strengttHs and the excitation frequencf)/ .

15 T T
(a) The stable gap can be increased by either decreasing the
1.0 - 1 magnetic field strengtithe Rosensweig tongue withdraws
or by increasing the vibration frequen@ye Faraday thresh-
0.5 - Q/n=20Hz ] old rises. The critical wave numbekg~614 m !, which

belongs to the maximum of the Rosensweig tongue, is al-

L} ————f — hand, waves beyond the Rosensweig onset oscillate around a
finite mean value synchronously to the external drive. In
light of Eq. (3.8) they belong to the subclass of waves with

S A

i 0.0 T f————— o~ most independent dflg and Q). This is in contrast to the

S (o) critical Faraday wave numb&g, which depends strongly on
5 10Ff y Q) via the dispersioiicf. inset in Fig. Tb)]. The two insta-

g subharm. Faraday bilities also distinguish by the time dependence of the ex-
s05F H°Se"lsive'g ] cited waves: Faraday waves oscillate subharmonically
'g [ Ym=30Hz around a zero mean valli@=1 in Eq.(3.8)]. On the other

8

s

- o
o o
T
°
2)
1

Aa
7\ B=0.
05 - ,’ \‘ . Mediated by quadratic nonlinearities in the hydrodynamic
I Qm=50Hz equations a coupling among three Rosensweig modes occurs
0.0 5 5(')'0 1 10'00 15'00 000 if their lateral wave vectors fulfill the geometric resonance
conditionkg; +kgo=kgrs, Where|kgi|=kg. This is the ge-
wave number k [1/m] . . . . .
neric triad wave vector interaction which enforces hexagonal

FIG. 6. The neutral stability curves for the subharmonic Faradaysurface patterngl]. An analogous resonance among three
instability (solid line) and the Rosensweig instabilitdashed ling ~ Faraday modes is inhibited by the subharmonic symmetry of
at different drive frequencies. The magnetizatibvtg is 0.5%  their time dependence. Those Faraday patterns usually ex-
higher than the Rosensweig threshdldr. At Q/7=50 Hz the hibit a square symmetry, which results from a four-wave

rest state(plane surfaceis linearly stable for drive amplitudes vector interactiorj19].
within the gapAa. Fluid parameters for EMG 90%,=5 mm. The existence of a Faraday-Rosensweig bicriticality opens
the possibility for a nonlinear cross coupling between two

day resonance already presented in Fig. 3. The new tonglearaday modeks, andks,, and one Rosensweig molg.
entering the stability diagram form below corresponds to thefemporal as well as spatial resonance is ensurelsjf
Rosensweig instability. If) is high enoughFig. 6(c)] Far-  +Kks,=Kg holds. The anglep betweerks, andks, depends
aday and Rosensweig tongues do not overlap oratagis.  on |ks| and can be controlled by the excitation frequefity
Drive amplitudes within the gapa stabilize the basic plane [see inset of Fig. (b)]. Thus pattern formation can be influ-
surface state. On leaving the gap towards lameFaraday enced by varying this external control parameter. By inspec-
waves will be excited, while a reduction afbelow the gap tion it can be seen that the combined action of self- and
leads to the onset of the Rosensweig instability. Figure Tross-coupling between the different modes takes maximum
shows the threshold of both instabilities as a function of theadvantage if the anglé is tuned to be 150°. This corre-

sponds to

E’o Qn=50Hz ' @ | ks=kg/\2(1+cosd)=614 m L/\2[1+cog150°)]
° L unstable by subharmonic Faraday waves .~ |
210 d S ~1190 il 4.2
£ -
g 05 plane surface stable /’ unstable by | In.this case, quasiperiodic surface patterns with a twelve—fqld
ki 7" Rosensweig instability orientational symmetry are likely to occur. Recently, this
j:,; Ir resonant coupling was showW5] to enforce quasiperiodic

0.0 ! : i igh-T i i
& 98900 0.995 1,000 1.005 1010 structures in Rayleigh-Beard convection under gravity
_ magnetic field amplitude Hy/H, modulation. Clearly, the ab_ove simple resonance argumer_1t
E 2000 M,=1.005 M, o) 30 o does not replace a full nonlinear calculation; nevertheless, it
% 1500 25 :%’ is a strong indicator and at least a hint at an interesting pa-
£ 1000 20 8 rameter regime. For the fluid EMG 9Q0@epthh=5 mm)
® o _____: 1535 we find that the appropriate bicriticality appears Mig
= %0 g 1102  =1004<MgandQ/m=32 Hz.

unstable by ) -:
Rosensweig instability 105 V. DISCUSSION
1 L L 1 1 1 L 0.0 °
20 3 40 50 f 60 ;/0 " 80 90 100 The experiments presented in Reff5,6] have been per-
excitation frequency v [Hz] formed in a narrow ring channel of 5 mm width. This con-

FIG. 7. The stability thresholds for subharmonic Faraday wavedined geometry is presumably inappropriate for a quantitative
(solid line) and the Rosensweig instabilitdashed lingas a func-  comparison with the above results. For instance, the strong
tion of (a) the applied magnetic fielt; or (b) the excitation fre- ~ deviations between the empiric Rosensweig wave number
quencyQ/7. The magnetic field is measured in unitstdy. Pa-  and the theoretical valuer= /pgy/y are suspected to arise
rameters as in Fig. h=5 mm. from the container side walls and inhomogeneities of the
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magnetic field. Measurements in a container with a largethe magnetic drive. This effect might be important in a recent
horizontal extension are thus desirable. Other problems usunagnetic Faraday experimdi®, where the first members of
ally encountered with water- or kerosin-based ferrofluidsthe alternating subharmonic-harmonic resonant cascade have
(EMG909 belongs to this classre the evaporation of the been observed. This succession has been prediz®@dfor
solvent and a drift of the surface tension due to contaminanonmagnetic liquids when the experiment is operated in the
tion. Here, oil based ferrofluids are more appropriate. Thosgo-called lubrication limit, wheré compares to the viscous
fluids are less sensitive against surface impurities. Moreoveggin depth»/Q. In this situation, however, the phenom-
since they are also more viscous, parasitic damping effectsnon of rotational viscosity in ferrofluids can no longer be
due to the container side walls and the meniscus contact “”@nored. While the flow field in thick layers can be consid-
[18,19 would become less disturbing. Recent Faraday eXgred irrotational, this approximation fails in the lubrication
periments20,21] with (nonmagnetigsilicone-oils as work-  jimit. The flow in thin layers is predominately vortical and
ing fluids demonstrate that empiric onset data and theoreticghe finite magnetic relaxation time leads to an increased ef-
predictions coincide within a few percent. . fective viscosity[23]. The additional contribution might be

In this paper surface waves are investigated, which ar@etectable in a careful measurement of the onset threshold,

driven by a periodic modulation of gravity. Alternatively, a which in turn depends sensitively on the viscous dissipation.
modulation of the applied magnetic field could be used ac-

cording toH g =Hgo+a cos(2M). In this case the basic state

magnetizatiorM ¢ (t) = yHg(t) becomes time dependent. As ACKNOWLEDGMENTS

it entersquadraticallyinto Eqg. (3.2), the effective excitation

signal is composed of two frequencies, except in the limit Stimulating discussions with M. lake, T. Mahr, |I. Reh-
a<<Hgp. It should also be noticed that the effective mag-berg, and R. Richter are appreciated. Support by the Deut-
netic drive is proportional t&? while it is linear ink for the ~ sche Forschungsgemeinschaft through the SFB 277 is grate-
gravity modulation. Shorter wavelengths are thus favored byully acknowledged.
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